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Abstract

Amalgamation of a subparametric triangular plate bending element with first-order shear deformation has occurred for

the first time with an approach that maintains uniform mesh sizes and shapes even while dealing with cutouts of arbitrary

shapes. This is a distinct improvement over the existing practices of cutout modeling. Further the formulation being based

on the subparametric element has the advantage of achieving matching modes, which enables the model to deal problems

of very thin plates without even going for reduced integration. Numerical examples on free vibration of plates with cutouts

have been analysed and the results presented together with those available in published literature.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Cutouts of regular geometric shapes are designed for various purposes [1] in diverse engineering fields.
Sometimes a cutout is not a part of initial design [2]. It happens because of damage of the structural elements
during their service life. In areas of biomechanics the analysis of cutouts of irregular shapes are also
encountered [3]. This brings the need for suggesting methods to deal arbitrary shaped cutouts. Though the
present concern is free vibration of plates, the review covers static and buckling problems of plates and shells
as well to exhibit the existing trend of cutout modeling.

No doubt, some semi-analytical approaches for dealing problems on cutouts of shapes other than
rectangular and of arbitrary ones exists [2,4,5] but any general purpose finite element method dealing such
problems is yet to be found. The approaches adopted till date cannot be called general purpose because the
discretization shape, number and overall meshing pattern become unique for each case. The number of
elements not only depends on the size of the cutout but also on its shape and even on its location in the
structure. Moreover, as the element shapes and sizes throughout the structure do not remain uniform, the use
of identical plate elements for computation of element matrices is not possible. Thus these methods increase
the cost of generation of global matrices because of repetitive computation. To be clearer, the case of a
rectangular cutout be considered. The mesh divisions towards the cutout boundary become finer [6] thereby
causing an increase in the total number of elements, which would have been much less, if there had been no
cutout. Some of the publications, dealing with cutouts, even make no mention of the method they adopt for
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

a, b length and width of plate
a0, b0 length and width of cutout
E Young’s modulus

u Poisson’s ratio
r mass density of plate
$ non-dimensional fundamental frequency

( ¼ ob2[12r(1�u2)/Eh2]1/2)
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modeling the cutouts [7–13]. Some quadrilaterals of different sizes around the cutout as cited by some
researchers [14,15] have been used by ABAQUS. This is also the method of handling the cases of circular and
elliptical cutouts [16,17]. In all these cases the mesh lines have been aligned around the cutout boundary. This
method of aligning the mesh lines around the cutout boundary not only increases the total degrees of freedom
(dof) but also raises a question about the uniformity in the level of precision in the calculation of the stiffness
and the mass matrices. This is because, for example the investigators [16,17] have integrated the element
matrices by reduced integration to get rid of shear locking. Though this may give some degree of accuracy to
the element matrices of the rectangular elements (away from the cutout) the characteristic matrices of the
quadrilateral elements (near the cutouts) being fractions of polynomials, would need more Gauss points to
achieve the same degree of accuracy [18]. Moreover, the other deficiencies of these elements not being compact
are also inherent in them. These problems become more pronounced if an arbitrarily shaped perforation is
encountered, in case of which a good number of quadrilaterals and triangles will have to surround the cutout.
All these shortcomings can be eliminated if the plate can be discretized into a number of square and compact
elements, notwithstanding the shape and size of the hole. This can be achieved if the cutout is also divided
along with the plate so that portions of the cutout can now be treated as elements within the plate element.
Then the element matrices of the holed plate can be obtained by deducting the corresponding matrices of the
cutout from those of the solid plate element. A little bit of elaboration of this technique seems to be the point
in order at this stage. Fig. 1 shows a rectangular plate containing cutouts of arbitrary shapes. The plate is
discretized into 18 numbers of triangular elements of uniform shape and size. Elements numbered as 9, 10, 11,
16, 17 and 18 contain portions of the cutout. If these portions are considered as elements, the displacement at
any point within such an element can be interpolated from the nodal values of that element. The nodal
displacement values of any particular cutout element can in turn be interpolated from the nodal displacements
of the corresponding triangular plate element within which the cutout portion is contained. As a result the
displacement at any point of the cutout element gets expressed finally in terms of the nodal displacements of
Fig. 1. (a) Uniform mesh layout in a rectangular plate with cutouts of arbitrary shapes, and (b) cutout in element 16 modeled as two

triangular cutouts.
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the virgin plate element. The entire process leading to the evaluation of the element matrices of the cutout
element is clearly explained in the following section. Though such a technique appears in the name of negative
stiffness method [19], the capability of the element used there to implement the ‘method of deduction’ in the
case of very thin plates is doubtful, because the authors have used full integration scheme. Even if someone
adopts the reduced integration technique to solve the cases of thin plates, the occurrences of spurious zero
energy modes cannot be averted. Thus the resulting element matrices obtained by using the ‘method of
deduction’ may produce non-positive pivots even in the case of moderately thin plates. Thus though the
‘method of deduction’ is a convenient tool to deal arbitrary shapes of cutouts it becomes ineffective in the case
of thin plates because of these reasons.

This discussion makes it clear that an ideal model for cutouts would be the one that can use the ‘method of
deduction’ both in thick and very thin plates. This is possible through an element that ensures the existence of
matching modes for the rotational terms [20], which is the basis of the present investigation.

In this paper, the plate and the cutout are analysed using a 13-noded subparametric triangular element. The
stiffness and mass matrices of the cutout are calculated using the standard principles of finite element analysis.
Then these matrices are transformed to all the nodes of the plate element by considering the portion of the
cutout within the plate element.

2. Finite element formulation

A new C0 plate element, which includes transverse shear deformation, is formulated. The polynomials
adopted for the deformation fields are complete. The stress normal to the middle surface is assumed to
be negligible. Material is isotropic and linearly elastic. As the polynomials are of higher order, faster rate
of convergence can be achieved. Three dof are considered here i.e. transverse displacement (w), rotation about
y-axis (a) and rotation about x-axis (b). To get the matching modes as discussed by Koziey and Mirza [20] the
degree of polynomial for approximation of w is cubic whereas those for the rotations are assumed to be
quadratic. To construct the cubic approximation for w the displacement at the nodes 1, 2, 3, 4, 6, 7, 9, 10, 12
and 13 are used. The quadratic approximation of rotation a and b are achieved using the rotation at the
nodes 1, 2, 3, 5, 8 and 11 as shown in Fig. 2. The sign convention for the dof has been followed from standard
text [18]. The strain terms as well as the elasticity matrix [D] are followed from Mindilin plate element of the
same text.

The location of any point within the element in the global coordinate system is determined by the
coordinates of the nodal points (xi, yi) as

x

y

( )
¼
X13
i¼1

Ni

xi

yi

( )
. (1)
Fig. 2. Subparametric plate element in the x–y plane with discretized cutout inside.
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The global displacement w and the rotations can be expressed in terms of nodal displacements and
rotations as

w ¼
X13
i¼1

N̄iwi, (2)

a

b

( )
¼
X13
i¼1

Ni

ai

bi

( )
, (3)

where N̄i and Ni are the cubic and quadratic shape functions respectively, which are expressed in non-
dimensional area coordinates.

N4, N6, N7, N9, N10, N12, N13 and N̄5; N̄8; N̄11 are all zeros. The remaining shape functions can be found
from any standard text.

The stiffness matrix of the solid plate element

½Kse� ¼

Z
A

½B�T½D�½B�hdA. (4)

The mass matrix of the solid plate element

½Mse� ¼

Z
A

½N�T½P�½N�hdA. (5)

The inertia matrix [P] is obtained as follows:

½P� ¼ ½I �3�3 rh;
rh3

12
;
rh3

12

� �T
, (6)

where h is the thickness of the plate and A, the area of the triangular element.
[B] and [N] are the strain–displacement and the shape function matrices, respectively.
The displacement at any point within the cutout element can be found as

wc ¼
X13
i¼1

N̄ciwci ¼
X13
i¼1

N̄ci

X13
i¼1

N̄iwi. (7)

The subscript c stands for cutout.
Similarly ac and bc can be found out in terms of the nodal rotations of the plate element. Thus

X13
i¼1

fdcgi ¼ ½T �
X13
r¼1

fdgr, (8)

where {dc} and {d} are the displacement vectors for the cutout and plate respectively.

½T � ¼
X13
i¼1

X13
r¼1

Nir 0

Nir

0 Nir

3
75

2
64 , (9)

½Kce� ¼ ½T �
T Kce

� �
½T �, (10)

where

K̄ce

� �
¼

Z
A

½Bc�
T½D�½Bc�hdA. (11)

The above integrands can be expressed asZ
A

FdA ¼
1

2

Xng

i¼1

W iJiFi, (12)
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in which fi is the value of f at a specific point in the triangle, Wi is the weight appropriate to this point, Ji is
the determinant of the Jacobian evaluated at that point and ng is the number of sampling points used. It may
be noted that weights are expressed directly here rather than as the product of one-dimensional weights [18].

All the above integrations have been carried out over the area of the triangle using 12 point Gauss
quadrature formula to achieve the required degree of precision, which is equal to 6 here. The stiffness matrix
of the perforated plate element is found by deducting the stiffness matrix of the hole from the stiffness matrix
of the virgin plate element:

½Ke� ¼ ½Kse� � ½Kce�. (13)

If the virgin element contains more than one cutout (element 10 in Fig. 1) or if a single cutout within the
virgin element is to be subdivided into more than one triangle, as shown for element 16 in Fig. 1(b), Eq. (12)
can easily be extended as

½Ke� ¼ ½Kse� �
XNc

i¼1

½Kce�i, (14)

where Nc indicates the number of the small cutouts.
Similar expressions can be written for the mass matrix of the perforated plate element. The resulting

eigenvalue problem after constructing the global element matrices is solved by subspace iteration method [21].
3. Numerical examples

Numerical examples are solved for checking the accuracy of the model. The 1st problem considers
fundamental frequency of a square plate of isotropic material (u ¼ 0.3) having a central square cutout of
various sizes for different side to thickness ratios. The purpose is to verify the capability of the model to handle
problems in the range of thick to thin plates, without producing negative pivots while dealing with very thin
plates. The results along with those of Reddy [22] are presented in Table 1. It is worth mentioning here that the
problems solved by Tham et al. [19] involve plates having thickness to span ratio ¼ 0.01 only, whereas in the
present investigation the same ratio ranges from 0.2 to 0.001. The above mentioned cases have been solved by
a 3� 3 mesh (18 elements).

The 2nd problem is solved to show the ability of the model to deal problems of free vibration of plates
having holes of curved sides. The element used to model the cutout being triangular fits well to curved
boundaries. This problem considered earlier by Takahashi [23] and later by Bicos and Springer [12] computes
the fundamental frequencies of clamped aluminum rectangular plate of varying circular cutout diameter. The
authors [12] had used a 4-noded quadrilateral element with selective reduced integration. The results obtained
by the present method have been compared with these two earlier observations in Table 2. For large cutouts
the results match well with those of Takahashi’s experiment [23]. For smaller diameters the difference is within
3%. The discretization of the plate exhibiting uniform mesh layout is shown in Fig. 3. All cases of this problem
have been solved using a grid comprising of 18 squares (6� 3).
Table 1

Non-dimensional fundamental frequencies ($) of simply supported isotropic square plate with a central square cutout

a0/a a/h ¼ 5 a/h ¼ 10 a/h ¼ 1000

Present method Ref. [22] Present method Ref. [22] Present method Ref. [22]

0.2 17.55 17.452 19.07 18.679 20.08 19.200

0.4 19.27 19.163 21.03 20.246 21.00 20.807

0.5 21.62 21.554 23.01 22.804 23.75 23.515

0.6 26.06 25.688 27.54 27.379 29.85 28.453

0.8 44.10 44.069 51.55 51.465 58.07 57.512
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Table 2

Fundamental frequencies (Hz) of clamped aluminum rectangular plate of varying circular cutout radius r

r/b Ref. [12] Ref. [23] Present method

0.000 148.77 148.77 151.00

0.032 148.77 148.77 153.01

0.068 148.78 150.00 154.00

0.100 148.79 151.23 155.02

0.132 150.00 154.91 157.00

0.168 154.91 159.84 162.10

a ¼ 0.504m, b ¼ 0.254m, h ¼ 0.000254m.

Fig. 3. Uniform mesh layout in a rectangular plate with a central circular hole.
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4. Conclusions

The subparametric element developed in this paper can effectively handle free vibration problem with
cutouts of arbitrary shapes without going for special types of meshing around the cutout boundary. Moreover
the element does not get hindered while dealing with cutouts in very thin plates. Last but not the least accuracy
can be achieved by using very less number of elements.
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